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Abstract

The rate-type constitutive relations of rate-independent metals with isotropic or kinematic hardening at finite elas-
tic–plastic deformations were presented through a phenomenological approach. This approach includes the decompo-
sition of finite deformation into elastic and plastic parts, which is different from both the elastic–plastic additive
decomposition of deformation rate and Lee�s elastic–plastic multiplicative decomposition of deformation gradient.
The objectivity of the constitutive relations was dealt with in integrating the constitutive equations. A new objective
derivative of back stress was proposed for kinematic hardening. In addition, the loading criteria were discussed. Finally,
the stress for simple shear elastic–plastic deformation was worked out.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenological theories of finite elastic–plastic deformations have been thoroughly discussed by
Nemat-Nasser (1992) and Naghdi (1990). In classical rate-independent plasticity, the finite elastic–plastic
deformation was commonly supposed to be decomposed into elastic and plastic parts, which are prescribed
through their respective constitutive laws. However, two issues remain unsettled. First, there are many dis-
putes on the decomposition of deformation into elastic and plastic parts (see Naghdi, 1990). An error is
believed to be introduced into the constitutive relations in the process of decomposing the total deforma-
tion into elastic and plastic parts (Metzger and Dubey, 1987). The existing rate-type constitutive relations
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are generally based on the additive decomposition of deformation rate into elastic and plastic parts. This
decomposition of deformation rate is inconsistent with the multiplicative decomposition of deformation
gradient into elastic and plastic parts. The choice of objective tensor rate was supposed to be the other issue
in the rate-type constitutive relations. Researchers (for example, Dienes, 1979, 1986; Lee et al., 1983;
Dafalias, 1983, 1985; Nemat-Nasser, 1983) have studied the constitutive relations for finite elastic–plastic
deformations and proposed several objective tensor rates. Some of the classical objective tensor rates are
Jaumann rate (material corotational rate), relative corotational rate (Green and Naghdi, 1965; Dienes,
1979) and Euler frame corotational rate (Sowerby and Chu, 1984). Szabó and Balla (1989) have compared
and analyzed these objective stress rates. The rate-type constitutive relations using these objective rates for
elastic–plastic deformations cannot be degenerated into the case of elastic deformation. Xiao et al. (1997)
have taken the logarithmic stress rate as the objective stress rate to formulate a self-consistent hypoelastic
model. The rate-type constitutive relations using the logarithmic stress rate, although applied to elastic
deformations, cannot be proved to be applied to elastic–plastic deformations. The selection of objective
tensor rate is somewhat arbitrary.

The two problems stated above will be dealt with in this paper. We will study the stress response to the
sub-process of small deformation in the process of finite deformation and propose the decomposition of the
finite deformation into elastic and plastic parts. This decomposition is different from both the multiplicative
decomposition of deformation gradient and the additive decomposition of deformation rate. As a result,
the constitutive relations for isotropic or kinematic hardening at finite elastic–plastic deformations will
be presented through a phenomenological approach. The objective derivative of back stress will be studied
in the case of kinematic hardening.
2. Constitutive relation for isotropic hardening at finite elastic–plastic deformations

2.1. The analysis of the existing constitutive relation

The deformation rate D is supposed to be decomposed as the sum of plastic (p) and elastic (e) parts, i.e.,
D ¼ Dp þDe ð1Þ
which are respectively prescribed by the plastic flow rule (such as, the associated flow rule) and the general-
ized Hooke�s law. Using the von Mises yield (or loading) criterion, we obtain the associated flow rule of
plastic strain
Dp ¼ _us ð2Þ
where s is the deviatoric part of the Cauchy stress r, _u is the plastic multiplier. The generalized Prandtl–
Reusss constitutive equation of isotropic hardening materials at finite deformations is supposed to be rep-
resented by
D ¼ w
h

1

s : s
ðr� : sÞsþ 1þ l

E
r
� � l

E
ðtr r

� ÞI ð3Þ
where l is Poisson�s ratio, E Young�s modulus, h a hardening factor, I the identity tensor and the notation
tr() denotes tensor trace. w = 1 when the deforming body is loaded, w = 0 when the deforming body is un-
loaded. r

�
is an objective derivative (rate) of stress and is generally expressed in the form
r
� ¼ _r�Xrþ rX ð4Þ
where X is a rotational rate, a superposed dot denotes the material time derivative.
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There are two problems in Eq. (3). First, it is not clear what kind of rotational rate should be used in Eq.
(4). Many authors have proposed several rotational rates as plausible choice. Second, the additive decom-
position of deformation rate is contradictory to Lee�s decomposition of deformation gradient (see Lee,
1969; Naghdi, 1990).

According to the general theory of constitutive model (Truesdell, 1966), the constitutive relation of elas-
tic isotropic materials is represented by
r ¼ J 0Iþ J 1Vþ J 2V2 ð5Þ
where J i ði ¼ 0; 1; 2Þ are scalar functions of three invariance of the left stretch tensor V. Obviously, the
Cauchy stress r is coaxial with the left stretch tensor V. The left stretch tensor is decomposed in the form
V ¼ REVkRT

E where, in rectangular Cartesian coordinates, RE is a proper orthogonal matrix and Vk is a
diagonal matrix. The principal stress rk depends on Vk. Hence, a constitutive relation of elastic deformation
can be expressed in the form
Da ¼
1þ l

E
r
� � l

E
ðtr r

� ÞI ð6Þ
where Da ¼ RE
_ln VkRT

E, r
� ¼ RE

_ðRT
ErREÞRT

E, i.e., the rotation rate X of the objective stress rate r
�

is _RERT
E.

Eq. (6) is equivalent to the hypoelastic model with the logarithmic rotational rate (Xiao et al., 1997,
1998; Bruhns et al., 1999). Hence, the constitutive equation (3) cannot be degenerated into the constitutive
equation of finite elasticity if the rotational rate is the material or the relative or Euler frame rotational rate
and not the logarithmic rotational rate. However, it has not yet been proved that Eq. (3) with the logarith-
mic rotational rate is applied to elastic–plastic deformations.

The material, the relative, Euler frame and the logarithmic rotational rates are determined only from the
total deformation gradient. However, the rotational rate in Eq. (4) may not be entirely a kinematical quan-
tity and may be related to the plastic part of the deformation gradient. The plastic deformation is depen-
dent on the constitutive relation of elastic–plastic materials. We do not know how to deal with this cycle of
calculation. Dafalias (1985, 1998) presented the plastic spin for anisotropic elastic–plastic deformation and
proposed the constitutive spin (related to the plastic spin) used in the corotational rate of inner variables.
However, he did not propose an explicit form of the constitutive relation of the plastic spin. It is difficult to
choose objective rate even for such simple constitutive relations as Eq. (3). We will deal with the objectivity
of the constitutive relation through a new approach in Section 2.2.

Next we analyze the decomposition of deformation into elastic and plastic parts. Researchers obtained
the additive decomposition of deformation rate D = De + Dep from the multiplicative decomposition of
deformation gradient F = FeFp (Lee, 1969; Naghdi, 1990). They supposed that De ð¼ 1

2
ð _FeF

�1
e þ

ð _FeF
�1
e Þ

TÞÞ is the elastic part of the deformation rate and Dep is the coupled elastic–plastic part of the defor-
mation rate (Xiao et al., 2000) and is an approximate plastic deformation rate. However, the extent to
which this approximation affects theoretical results remains unclear (Naghdi, 1990).

The deformation rate can be measured by taking intermediate (including the current and the initial) con-
figuration as the reference state. Since the deformation gradient can be expressed in the form F = F1F0

where F1 is measured by taking a certain intermediate configuration which may be the current configuration
as the reference state, we obtain the velocity gradient L ¼ _FF�1 ¼ _F1F�1

1 and the deformation rate
D ¼ 1

2
ðLþ LTÞ. Hence, as in the case of infinitesimal deformation, we can obtain the decomposition of

the deformation rate into elastic and plastic parts, D = De + Dp, by taking the current configuration as
the reference state. However, for the decomposition F = Fe, Fp, F and Fp are measured with reference to
the initial configuration, while Fe is measured with reference to the intermediate stress-free configuration.
Therefore, the decomposition D = De + Dp is not derived from decomposition F = FeFp. It is not surprising
that the two decompositions contradict each other. If there exists the additive decomposition of the
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Lagrangian strain into elastic and plastic parts, E = Ee + Ep, E, Ee and Ep should be measured with refer-
ence to the same configuration. So that we cannot obtain E = Ee + Ep from F = FeFp, either.

If the decomposition F = FeFp is used, we cannot yet obtain the constitutive laws of Fe and Fp because
the flow rule of plastic strain is expressed in the rate form. If the decomposition D = De + Dp is used, we do
not know what kind of rotational rate should be used in the rate-type constitutive equations. The analysis
of the decomposition of finite deformation into elastic and plastic parts will be continued in Section 2.2.

2.2. A new constitutive relation

Formulating now a new constitutive relation for isotropic hardening at finite elastic–plastic deforma-
tions, first we analyze the character of the elastic deformation of isotropic materials. A process of elastic
deformation is subdivided into: I! F1! F2! F3 . . ., where sub-indices 1,2,3, . . . indicate respectively
times t1, t2, t3, . . . The deformation gradients are decomposed in the forms
Fi ¼ REiVkiR
T
Li ði ¼ 1; 2; 3; . . .Þ ð7Þ
where Vk is a diagonal matrix whose components are the eigenvalues of left stretch tensor, both RE and RL

are proper orthogonal matrices. Matrix denotes the rectangular Cartesian components of tensor in this pa-
per. Vk, RE and RL in the two-dimension are respectively expressed in the forms
Vki ¼
aðiÞ 0

0 bðiÞ

� �
ð8Þ

REi ¼
cos hðiÞ � sin hðiÞ
sin hðiÞ cos hðiÞ

� �
ð9Þ

RLi ¼
cos bðiÞ � sin bðiÞ
sin bðiÞ cos bðiÞ

� �
ð10Þ
where the independent variable i is time (ti). Let h(1) = 0 with no basic loss of generality. Choosing an initial
configuration, we have b(1) = 0. The deformation rate is decomposed in the form
D ¼ Da þDb ð11Þ

where
Da ¼
cos h � sin h

sin h cos h

� �
_aa�1 0

0 _bb�1

� �
cos h sin h

� sin h cos h

� �
¼ RE

_ln VkRT
E

Db ¼
cos h � sin h

sin h cos h

� �
0 ðba�1 � ab�1Þ _b=2

ðba�1 � ab�1Þ _b=2 0

" #
cos h sin h

� sin h cos h

� �
ð12a; bÞ
Then, at time t1, we have
Da ¼
_aa�1 0

0 _bb�1

� �
; Db ¼

0 ðba�1 � ab�1Þ _b=2

ðba�1 � ab�1Þ _b=2 0

" #
ð13a; bÞ
Assume that the deformation whose gradient is a diagonal matrix generates a diagonal stress matrix. Then,
the stress at time t1 can be written as
rt1 ¼
r1ð1Þ 0

0 r2ð1Þ

� �
ð14Þ
Obviously, the scalar product of the instantaneous stress rt1
and Db of Eq. (13b) is equal to zero, that is, the

power done by rt1
is independent of Db. Assume that the part Db of the deformation rate does not affect
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the stress in the sub-process from t1 to t2. So that the variation of variable b and thus RL does not lead to
the variation of the stress. The deformation rate sometimes implies the increment of small strain in this
paper. Then, the stress at time t2 is independent of RL. According to the principle of objectivity of the
constitutive model, the stress at t2 can be written in the form
rt2
¼

cos hð2Þ � sin hð2Þ
sin hð2Þ cos hð2Þ

� �
r1ð2Þ 0

0 r2ð2Þ

� �
cos hð2Þ sin hð2Þ
� sin hð2Þ cos hð2Þ

� �
¼ RE2rk2RT

E2 ð15Þ
Similarly, the deformation rate in the sub-process F2! F3 is also decomposed into two parts. The power
done by the instantaneous stress is independent of one part Db of the deformation rate (from Eqs. (12b) and
(15)). Thus, the stress at time t3 can be written in the form
rt3
¼

cos hð3Þ � sin hð3Þ
sin hð3Þ cos hð3Þ

� �
r1ð3Þ 0

0 r2ð3Þ

� �
cos hð3Þ sin hð3Þ
� sin hð3Þ cos hð3Þ

� �
¼ RE3rk3RT

E3 ð16Þ
It is seen from Eqs. (14)–(16) that the principal stress rk depends on Vk and the stress is coaxial with the left
stretch tensor V, which is consistent with the general theory of constitutive model (Eq. (5)). Hence, the
assumption is rational that the deformation rate consists of two parts and the part Db of which the defor-
mation power is independent does not affect the stress in the next sub-process.

The decomposition of Eq. (11) is easily generalized to the case of three dimensions. From Eq. (7), we
obtain
D ¼ RE
_VkV�1

k RT
E þ 1

2
REðV�1

k RT
L

_RLVk þ Vk
_R

T

LRLV�1
k ÞRT

E ¼ Da þDb ð17Þ
Obviously, _VkV�1
k is a diagonal matrix, 1

2
ðV�1

k RT
L

_RLVk þ Vk
_R

T

LRLV�1
k Þ is a symmetric matrix whose diagonal

elements are all zero. Hence, the decomposition of Eq. (17) is the generalization of Eq. (11) in three
dimensions.

The above analyses are not aimed at perfectly elastic deformations. In fact, both the hypoelastic model
using the logarithmic stress rate and the constitutive equation (6) are consistent with the general theory of
elasticity. The above assumption for elastic deformations can be generalized into elastic–plastic
deformations.

In physical sense, a process of finite elastic–plastic deformation can be regarded as a series of sub-pro-
cesses of small elastic–plastic deformation. Knowing the increments of stress in each sub-process and how
to add these increments, we can formulate the constitutive relation. Consider a process of elastic–plastic
deformation: I! Vk1! F2! F3 . . . It is at the elastic stage from time t0 to time t1, and reaches the elas-
tic–plastic stage at time t1. Then, the stress is a diagonal matrix rk1 at time t1. According to the associated
flow rule, the plastic strain rate (deformation rate) must be a diagonal matrix in the sub-process
Vk1 ! F2 ¼ RE2Vk2RT

L2. From Eq. (15), only diagonal part of deformation rate affects the stress if Vk1! F2

is a process of elastic deformation. Hence, only diagonal deformation rate affects the stress in the sub-pro-
cess of elastic–plastic deformation Vk1! F2. The assumption is valid even in the case of elastic–plastic
deformation that the part Db of deformation rate (see Eq. (11) or (17)) of which the rate of the stress work
is independent does not affect the stress in the next sub-process. Thus, the stress can be expressed in the
form RE2rk2RT

E2 at t2 as in the case of elastic deformation. From the generalized Hooke�s law and the asso-
ciated flow rule of plastic strain, we obtain the governing equation of principal stress rk2
_ln Vk2 ¼
w
h

1

sk1 : sk1

ð _rk2 : sk1Þsk1 þ
1þ l

E
_rk2 �

l
E
ðtr _rk2ÞI ð18Þ
where _ln Vk2 ¼ ðln Vk2 � ln Vk1Þ=ðt2 � t1Þ, _rk2 ¼ ðrk2 � rk1Þ=ðt2 � t1Þ.
However, the principal direction of the stress need not be consistent with that of the left stretch tensor V

in the case of elastic–plastic deformation. The stress need not be expressed in the form RE3rk3RT
E3 at time t3.
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The decomposition of deformation into elastic and plastic parts is supposed to be essential for the
formulation of the constitutive relations for finite elastic–plastic deformations. Both the elastic–plastic
decompositions D = De + Dp and F = FeFp are inappropriate for finite elastic–plastic deformations. In
essence, the elastic Hooke�s law is prescribed by taking the stress-free configuration as the reference state.
The plastic flow rule is expressed in the rate form by taking the current configuration as the reference state.
In the case of elastic deformation, the stress-free configuration is the initial configuration (perhaps a rigid
body rotation is superposed). In the case of elastic–plastic deformation, the stress-free configuration may be
an intermediate stress-free configuration.

The deformation gradient at time t2 is decomposed into elastic (e) and plastic (p) parts in the form
RE2Vk2RT
L2 ¼ ðRE2Vk2eÞðVk2pRT

L2Þ ð19Þ
where RE2Vk2e is the elastic deformation gradient generating the stress RE2rk2RT
E2, Vk2PRT

L2 is regarded as the
measure of plastic (permanent) deformation. The deformation gradient at time t3 is decomposed in the
form
RE3Vk3RT
L3 ¼ ðRE3bVk3bRT

L3bÞðVk2pRT
L2Þ ð20Þ
Assume that the elastically or elastic–plastically deforming body intermediately unloaded and again loaded
generates the same stress as this body continuously loaded does. Hence, we can take the intermediate stress-
free configuration at t2 as the reference state to study the sub-process from t2 to t3. From Eqs. (19) and (20),
the deformation gradient should varies from RE2Vk2e to RE3bVk3bRT

L3b from t2 to t3. An argument analogous
to the deformation from t1 to t2 gives that the stress varies from RE2rk2RT

E2 to RE3brk3RT
E3b (RE3b need not be

equal to RE3). The governing equation of the principal stress is
_ln Vk3b ¼
w
h

1

sk2 : sk2

ð _rk3 : sk2Þsk2 þ
1þ l

E
_rk3 �

l
E
ðtr _rk3ÞI ð21Þ
Similarly, we have
RE3bVk3bRT
L3b ¼ ðRE3bVk3beÞðVk3bpRT

L3bÞ ð22Þ
where the deformation RE3bVk3be is the elastic deformation generating the stress RE3brk3RT
E3b. A substitu-

tion of Eq. (22) into Eq. (20) yields
F ¼ ðRE3bVk3beÞðVk3bpRT
L3bÞðVk2pRT

L2Þ ¼ F�eF�p ð23Þ
where ðVk3bpRT
L3bÞðVk2pRT

L2Þ is regarded as the measure of plastic deformation at time t3. The deformation
from t3 to t4 is dealt with in the same way as the above. The governing equations (18) and (21) etc. of prin-
cipal stress and the expressions of the principal direction of stress represent the constitutive relation for
elastic–plastic deformations.

Here, the decomposition of deformation is represented by F ¼ F�eF�p where F�e and F�p respectively indi-
cate ‘‘elastic’’ and ‘‘plastic’’ deformation. This decomposition and Lee�s decomposition of deformation gra-
dient are the same in the form but in essence different. In Lee�s decomposition F = FeFp, Fe and Fp are not
supposed to be simultaneous, that is, the elastic and plastic deformation are the sub-processes in the whole
process of deformation. In the decomposition F ¼ F�eF�p proposed here, F�e and F�p are simultaneous in the
whole process of deformation.

To degenerate the case of elastic–plastic deformation into the case of rigid-plastic deformation we con-
sider a similar deformation: I! F1! F2! F3. The plastic deformation at t1 is Vk1RT

L1. The deformation
gradient at t2 is decomposed in the form F2 ¼ ðRE2bVk2bRT

L2bÞðVk1RT
L1Þ. Hence, the stresses are

0! RE1rk1RT
E1 ! RE2brk2RT

E2b, with
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_ln Vk2b ¼
1

h
1

sk1 : sk1

ð _rk2 : sk1Þsk1 ð24Þ
We have RE2bVk2bRT
L2b ¼ F2F�1

1 RE1. When F2F�1
1 trends to I, we obtain
RE2b
_ln Vk2bRT

E2b ¼ D ð25Þ

Thus Eq. (24) becomes
D ¼ 1

h
1

s : s
ð _r : sÞs ð26Þ
where _r : s is equal to r
�

: s. We mention in passing that in the case of rigid-plasticity the direction of the
deformation rate D cannot suddenly change because the direction of the deformation rate must be consis-
tent with that of the instantaneous deviatoric stress. In fact, there does not exist rigid-plastic deformation.

Next we analyze the transformations under superposed rigid body rotations of variables. When a rigid
body rotation Q(t) (Q(0) = I) is superposed on the deformation, the deformation gradient transforms
according to
FþðtÞ ¼ QðtÞFðtÞ ð27Þ

From Eqs. (19), (20), (22), and (23), we obtain the transformations
Fþ�eðtÞ ¼ QðtÞF�eðtÞ; Fþ�pðtÞ ¼ F�pðtÞ ð28a; bÞ
Thus, the stress transforms according to
rþðtÞ ¼ QðtÞrðtÞQTðtÞ ð29Þ

Therefore, the constitutive model proposed here obeys the principle of objectivity. The ‘‘plastic’’ deforma-
tion gradient is invariant under superposed rigid body rotations according to the above definition of the
plastic deformation gradient.

If the deformation from I to F ¼ REVkRT
L is perfectly elastic deformation, RT

L may be regarded as the
plastic deformation. The plastic deformation RT

L is invariant under superposed rigid body rotations.
From Eqs. (19), (20), (22), and (23), the transformations of the ‘‘elastic’’ and ‘‘plastic’’ deformation gra-

dients can also be expressed in the forms
Fþ�eðtÞ ¼ QðtÞF�eðtÞQ
Tð�Þ; Fþ�pðtÞ ¼ Qð�ÞF�pðtÞ ð30a; bÞ
where Qð�Þ is a proper orthogonal tensor and is independent of the rigid body rotation Q(t). It is found that
neither Eqs. (30a,b) nor (28a,b) will lead to contradiction in the derivation of the constitutive relation.

Naghdi (1990) gave the transformations under superposed rigid body rotations of Fe and Fp in the
decomposition F = FeFp, i.e.,
Fþe ðtÞ ¼ QðtÞFeðtÞQ
TðtÞ; Fþp ðtÞ ¼ QðtÞFpðtÞ ð31a; bÞ
where QðtÞ is a proper orthogonal tensor-valued function of time, different from Q(t).
If D = De + Dp is used, we have the transformations under superposed rigid body rotation Q(t) of D, De

and Dp
DþðtÞ ¼ QðtÞDeðtÞQTðtÞ þQðtÞDpðtÞQTðtÞ
Dþe ðtÞ ¼ QðtÞDeðtÞQTðtÞ and Dþp ðtÞ ¼ QðtÞDpðtÞQTðtÞ ð32a; b; cÞ
From Eqs. (31b) and (32c), we show again that the decomposition D = De + Dp is not derived from the
decomposition F = FeFp. Similarly, we can show again that the additive decomposition of the Lagrangian
strain into elastic and plastic parts (E = Ee + Ep) is not derived from F = FeFp.
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We use Cauchy stress in the development above. The scalar product of Cauchy stress and deformation
rate (r :D) is the rate of stress work per unit volume at the instantaneous configuration, while I3r :D is the
rate of stress work per unit volume at the initial configuration where I3 is the third invariant of the left
stretch tensor. Some authors proposed that the weighted Cauchy stress I3r, also called the Kirchhoff stress,
replace the Cauchy stress in the constitutive equation for finite deformation. We can use the Kirchhoff
stress instead of the Cauchy stress in the above development of the constitutive relation. However, the
quantity I3 should be measured with reference to intermediate stress-free configurations.

The constitutive relation proposed here sternly satisfies Hooke�s law and the associated flow rule, and
will not lead to contradiction in separating the total deformation into elastic and plastic parts.
3. Constitutive relation for kinematic hardening at elastic–plastic deformations

Take the Cartesian coordinate system making shear stress components vanish, the von Mises yield (or
loading) surface with kinematic hardening is expressed as
f ¼ 1
2
ðs� aÞ : ðs� aÞ � 1

3
r2

y ¼ 1
2
ðsi � aijÞðsi � aijÞ � 1

3
r2

y ¼ 0 ði; j ¼ 1; 2; 3Þ ð33Þ
where a with components aij is the deviatoric back stress (abbreviated as back stress), (si) is a diagonal ma-
trix whose components are eigenvalues of s and ry is the equivalent Cauchy stress at first yield. In general,
aij(i 5 j) are not equal to zero.

In the past, the associated flow rule of plastic strain is represented by
Dp ¼ _uðs� aÞ ¼ _uðsi � aijÞ ð34Þ
Several authors proposed the constitutive relation for kinematic hardening
D ¼ w
h

1

�s : �s
ðr� : �sÞ�sþ 1þ l

E
r
� � l

E
ðtr r

� ÞI ð35Þ

a
� ¼ r

�
: �s

�s : �s
�s ð36Þ
where �s ¼ s� a. Eq. (36) is referred to as the evolution equation of a. The objective derivatives of stress and
back stress are supposed to have the same form. The above constitutive relation is based upon the decom-
position of deformation rate. Hence, it is not applied to finite elastic–plastic deformations.

If the associated flow rule (34) was valid, the assumption for isotropic hardening could not be applied to
kinematic hardening. In fact, the author�s paper (2005) has shown that the associated flow rule should be
Dp ¼ _uðsi � aiiÞ ð37Þ

where both (si) and (aii) are diagonal matrixes. It is noted that (si � aii) is still an objective tensor. The plas-
tic deformation rate is coaxial with �sa ¼ ðsi � aiiÞ and generally not coaxial with �s ¼ ðsi � aijÞ. Hence, Dp is
a diagonal matrix in the state of stress (r1, r2, r3).

As in the case of isotropic hardening, we still assume that the part of the deformation rate of which the
rate of stress work is independent does not affect the stress. Hence, we can develop the constitutive relation
for kinematic hardening in such a way as in the above section. When sk is replaced by �sa ¼ ðsi � aiiÞ the
constitutive equations (18) and (21) for isotropic hardening becomes the constitutive equations for kine-
matic hardening. Consider a general elastic–plastic deformation: I! Vk1! F2! F3 . . ., The deformation
gradients are decomposed into elastic and plastic parts in such a form as Eqs. (19), (20), and (23). The stres-
ses can be expressed in the forms 0! rk1 ! RE2rk2RT

E2 ! RE3brk3RT
E3b. The governing equation of the prin-

cipal stress in the sub-process from time t2 to t3 is, for example, expressed as
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_ln Vk3b ¼
w
h

1

�sa : �sa

ð _rk3 : �saÞ�sa þ
1þ l

E
_rk3 �

l
E
ðtr _rk3ÞI ð38Þ
where �sa ¼ ðsi � aiiÞ which is the quantity at time t2. The above constitutive relation complies with the prin-
ciple of objectivity.

The main objective of this section is to study the evolution equation of back stress. We analyze two
objective derivatives of back stress and propose a new objective derivative of back stress. Consider the
deformation: I! R1U1! R2U2! R3U3 . . .,Ui (i = 1,2,3, . . .) are the right stretch tensors. Let a2 and a3

be respectively the back stresses at times t2 and t3.
(a) The relative corotational rate of back stress. Taking the initial configuration as the reference state, the

deformation gradients at times t2 and t3 are respectively R2U2 and R3U3. Let us assume that a2 is rotated by
R3RT

2 from t2 to t3, i.e.,
aR
23 ¼ ðR3RT

2 Þa2ðR3RT
2 Þ

T ð39Þ

Then, the objective increment of back stress from t2 to t3 is defined by
DRa23 ¼ a3 � ðR3RT
2 Þ

Ta2ðR3RT
2 Þ

T ð40Þ

and thus the corresponding objective derivative of back stress is defined by
_aR ¼ lim
t3�t2¼Dt!0

DRa23

Dt

¼ lim
Dt!0

ðR3RT
2 Þ

a3 � a2

Dt

� �
ðR3RT

2 Þ
T þ R3

ðRT
3 � RT

2 Þ
Dt

a3 þ ðR3RT
2 Þa3

ðR3 � R2Þ
Dt

RT
3

� �
¼ _aþ aXR �XRa ð41Þ
where XR ¼ _RRT, is the relative rotational rate. _aR is the relative corotational rate. In a particular case, the
back stress a0 is not equal to zero at time t0, the back stress is affected only by rotation after time t0 (for
instance, in the case of elastic deformation). Thus, the back stresses at times t2 and t3 are respectively
a2 ¼ R2a0RT
2 ð42Þ

a3 ¼ R3a0RT
3 ¼ ðR3RT

2 Þa2ðR3RT
2 Þ

T ð43Þ
Hence, the relative corotational rate implies that the rotation of back stress is calculated by taking the ini-
tial configuration as reference state.

(b) The material corotational rate of back stress (Jaumann rate). Taking current configuration as refer-
ence state, we can obtain the material corotational rate. Taking the configuration at time t2 as reference
state, we obtain the deformation gradients from t2 to t3, I! R23U23, where R23U23 = (R3U3)(R2U2)�1.
Assume that a2 is rotated by R23 from t2 to t3, i.e.,
aJ
23 ¼ R23a2RT

23 ð44Þ
Then, the objective increment of back stress from t2 to t3 is defined by
DJa23 ¼ a3 � R23a2RT
23 ð45Þ
and thus the corresponding objective derivative of back stress is defined by
_aJ ¼ lim
t3�t2¼Dt!0

DJa23

Dt
¼ lim

Dt!0
ðR23Þ

a3 � a2

Dt

� �
ðRT

23Þ þ
ðI� R23Þ

Dt
a3 þ R23a3

ðI� RT
23Þ

Dt

� �
¼ _aþ aw� wa ð46Þ
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where w is the material rotational rate. _aJ is the material corotational rate. It should be noted that the mate-
rial rotational rate is obtained by taking either initial or current configuration as reference state.

(c) A new objective derivative of back stress. Taking intermediate stress-free configuration at t2 as ref-
erence state, the deformation gradients at t2 and t3 are respectively expressed in the forms
Ffree
2 ¼ RE2Vk2e and Ffree

3 ¼ RE3bVk3bRT
L3b ð47a; bÞ
from Eqs. (19) and (20) used in the case of kinematic hardening. So we obtain the rotational tensor for a2
P23 ¼ RE3bRT
L3bRT

E2. ð48Þ
At time t3, a2 is rotated in the form
ap
23 ¼ P23a2PT

23 ð49Þ
The objective increment of back stress from t2 to t3 is defined by
DPa23 ¼ a3 � P23a2PT
23 ð50Þ
and thus the corresponding objective derivative of back stress is defined by
_ap ¼ lim
t3�t2¼Dt!0

Dpa23

Dt
¼ _aþ a _P23 � _P23a ð51Þ
where _P23 ¼ limt3�t2¼Dt!0
ðP23�IÞ

Dt , is a skew-symmetric tensor. We have the transformation under superposed
rigid body Q of _P23, _P

þ
23 ¼ Q _P23QT þ _QQT. So that _ap is the objective derivative of back stress. _P23 is not

entirely a kinematical quantity and is related to plastic deformation gradient while both w and XR are en-
tirely kinematical quantities.

Suppose that the back stress a0 is not equal to zero at time t0. In the case of elastic deformation, Eqs.
(47a,b) become
Ffree
2 ¼ RE2Vk2 and Ffree

3 ¼ RE3Vk3RT
L3RL2 ð52a; bÞ
and thus the rotational tensor in Eq. (48) becomes
P23 ¼ RE3RT
L3RL2RT

E2 ¼ R3RT
2 ð53Þ
So Eq. (50) is the same as Eq. (40) and _ap becomes the relative corotational rate _aR.
In the case of rigid-plastic deformation, Eqs. (47a,b) become
Ffree
2 ¼ RE2b and Ffree

3 ¼ RE3bVk3bRT
L3b ¼ F3F�1

2 RE2b ð54a; bÞ

and thus the rotational tensor of Eq. (48) becomes
P23 ¼ RE3bRT
L3bRT

E2b ¼ R23 ð55Þ

where R23 is a proper orthogonal tensor in the polar decomposition R23U23 ¼ F3F�1

2 . Hence, Eq. (50) be-
comes Eq. (45), _ap becomes Jaumann rate _aJ.

Using the Prager–Ziegler shifting model of the center of yield surface, assume that
_aP ¼ _m�s ð56Þ

where �s ¼ s� a. According to the consistency condition of yield criterion (33), we obtain the evolution
equation of back stress
_aP ¼
_sP : �s

�s : �s
�s ð57Þ
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In the same way as in the case of isotropic hardening, we obtain the constitutive relation for rigid-plastic
deformation
Dk ¼
1

h
1

�sa : �sa

ð_sk : �saÞ�sa with r ¼ s ¼ RDskRT
D ð58Þ
where Dk is a diagonal matrix containing the eigenvalues of deformation rate D, RD is a proper orthogonal
matrix with D ¼ RDDkRT

D. In the case of rigid-plastic deformation, the objective rates in Eq. (57) are the
Jaumann rate. The Jaumann rate is supposed to lead to unreliable results, such as the oscillation of stress
in the simple shear rigid-plastic deformation. However, this puzzle results from using the existing associated
flow rule of plastic strain (expressed by Eq. (34)), but not from choosing Jaumann rate as the objective rate,
as pointed out by the author�s paper (2005).
4. The determination of the coefficient h for the constitutive relation

Uniaxial tension or compression can determine the scalar factor h in the constitutive relations for isoto-
pic or kinematic hardening. In uniaxial tension of ductile metal bar, Cauchy stress on the cross-section of
the bar is r1, the bar is l0 long at the initial moment, l long at the current moment. From the constitutive
relations for isotropic or kinematic hardening, we have
_
lnðl=l0Þ ¼

2

3h
_r1 þ

1

E
_r1 ð59Þ
and
d lnðl=l0Þ
dr1

¼ 2

3h
þ 1

E
ð60Þ
We depict Cauchy stress r1—the logarithmic strain ln(l/l0) curve for uniaxial tension from the examination.
Let E be the slope of the cure at the elastic state, let Et be the slope of the curve at the elastic–plastic phase,
we obtain
1

h
¼ 3

2

1

Et
� 1

E

� 	
ð61Þ
5. Loading criteria

In the case of isotropic hardening, the yield surface is f ¼ 1
2
s : s� 1

3
r2

y ¼ 0. With ry fixed, the derivative
of f with respect to time t is
f̂ ¼ _s : s ¼ _rk : sk ð62Þ

From Eqs. (18) and (21), etc., we have
_ln Vk3b : sk ¼
3

2Et
� 3

2E
þ 1þ l

E

� 	
_rk : skð Þ ð63Þ
For elastic–plastic uniaxial tension of work-hardening materials, we have ð 3
2Et
� 3

2E þ
1þl

E Þ > 0, ð _rk : skÞ > 0

and _ln Vk3b : sk > 0. For elastic–plastic uniaxial tension of work-softening materials, we have

ð 3
2Et
� 3

2E þ
1þl

E Þ < 0, ð _rk : skÞ < 0 and _ln Vk3b : sk > 0. Hence the loading criteria are defined to be



5624 L.-J. Shen / International Journal of Solids and Structures 43 (2006) 5613–5627
(1) 1
2
s : s� 1

3
r2

y ¼ 0 and ð _rk : skÞ > 0 (only for work-hardening) or _ln Vk3b : sk > 0, loading;

(2) 1
2
s : s� 1

3
r2

y ¼ 0 and _rk : sk ¼ 0 or _ln Vk3b : sk ¼ 0, neutral loading;

(3) 1
2
s : s� 1

3
r2

y ¼ 0 and _rk : sk ¼ 0 or _ln Vk3b : sk < 0, unloading from an elastic–plastic state;

(4) 1
2
s : s� 1

3
r2

y < 0, elastic state.

Naghdi (1990) proposed that the loading criteria for work-softening materials should be constructed
from yield surface in strain space.

In the case of kinematic hardening, the yield surface is f ¼ 1
2
ðs� aÞ : ðs� aÞ � 1

3
r2

y ¼ 0. With a and ry

fixed, the derivative of f with respect to time t is
f̂ ¼ _rk : �sa ð64Þ
It should be noted that in differentiating f with respect to time t, the principal direction of stress should not
be changed since that of back stress a is not changed. f̂ ¼ _rk : �sa ¼ _sk : �sa is an objective scalar. So that
f̂ ¼ _sP : �s ¼ s

�
: �s, where s

�
is any other kind of objective stress tensor. As in the case of isotropic hardening,

the loading criteria are defined to be

(1) 1
2
�s : �s� 1

3
r2

y ¼ 0 and _rk : �sa > 0 (only for work-hardening) or _ln Vk3b : sa > 0, loading;

(2) 1
2
�s : �s� 1

3
r2

y ¼ 0 and _rk : �sa ¼ 0 or _ln Vk3b : sa ¼ 0, neutral loading;

(3) 1
2
�s : �s� 1

3
r2

y ¼ 0 and _rk : �sa < 0 or _ln Vk3b : sa < 0, unloading from an elastic–plastic state;

(4) 1
2
s : s� 1

3
r2

y < 0, elastic state.

In the above loading criteria, using Vk3b does not imply that the loading criteria are appropriate only for
the process F2! F3. The loading criteria are appropriate for any sub-processes by using the quantities cor-
responding to the sub-processes.

The evolution equation of the back stress is on the basis of the consistency condition of yield criteria.
Hence, if 1

2
�s : �s� 1

3
r2

y ¼ 0 and loading or neutral loading, Eq. (57) is valid, otherwise, a
� ¼ 0. It is noted that

the deviatoric back stress may be rotated in elastic deformations though a
�

is equal to zero.
6. Simple shear deformation

The simple shear deformation is acted as an example in order to compare the theory in this paper with
other theories. The motion in simple shear is
x1 ¼ X 1 þ kX 2; x2 ¼ X 2; x3 ¼ X 3 ð65Þ

where xi and Xi (i = 1,2,3) are respectively rectangular Cartesian coordinates of the current and initial
configuration. We obtain the deformation gradient F, the deformation rate D, the materials rotational rate
w, the relative rotational rate XR ¼ _RRT and Euler frame rotational rate XE ¼ _RERT

E (see the relevant ref-
erences, for example, Shen, submitted for publication). The logarithmic rotational rate (Bruhns et al., 1999)
is
XLog ¼
_k
4

4

1þ _k
þ kffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

sh�1k=2

 ! 0 1 0

�1 0 0

0 0 0

2
64

3
75 ð66Þ
We calculate the stress response to the simple shear of the elastic–plastic materials exhibiting isotropic
hardening by respectively using the model presented in the paper and the other models with two



Fig. 1. Principal stress response during simple shear for elastic–plastic materials exhibiting isotropic hardening (the equivalent stress at
initial yield is equal to 0.16 GPa, l = 0.3, E = 39 GPa, Et = 7.96 GPa). Curve (a) is based on the new theory. Curves (b–e) are based on
Eq. (3) where the rotation rate is respectively taken as XE, XR, XLog and w.

Fig. 2. Principal angle response during simple shear for elastic–plastic materials exhibiting isotropic hardening (the equivalent stress at
initial yield is equal to 0.16 GPa, l = 0.3, E = 39 GPa, Et = 7.96 GPa). Curve (a) is based on the new theory. Curves (b–e) are based on
Eq. (3) where the rotation rate is respectively taken as XE, XR, XLog and w.

Fig. 3. Principal angle response during simple shear for elastic–plastic materials exhibiting isotropic hardening (the equivalent stress at
initial yield is equal to 0.16 GPa, l = 0.3, E = 39 GPa, Et = 13 GPa). Curve (a) is based on the new theory. Curves (b–e) are based on
Eq. (3) where the rotation rate is respectively taken as XE, XR, XLog and w.
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Fig. 4. Principal angle response during simple shear for elastic–plastic materials exhibiting isotropic hardening (the equivalent stress at
initial yield is equal to 0.16 GPa, l = 0.3, E = 39 GPa, Et = 13 GPa). Curve (a) is based on the new theory. Curves (b–e) are based on
Eq. (3) where the rotation rate is respectively taken as XE, XR, XLog and w.
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ratios of Young�s modules E to the slope Et. The principal stresses r1 and the angles h are depicted in Figs.
1–4.

It is shown in the figures that the principal angle may not monotonically vary with shear strain if the
constitutive equation (3) associated respectively with w, XR and XE is used. Both the principal stress
and the principal angle monotonically vary with shear strain if the new model or the constitutive equation
(3) with XLog is used. The larger shear strain k, the greater the difference between the new theory and other
theories.

In addition, the new constitutive relations of the isotropic hardening and the kinematic hardening mate-
rials lead to the same result for the simple shear.
7. Conclusions

1. The constitutive relations with isotropic and kinematic hardening at finite elastic–plastic deformations
are presented through a new approach. These constitutive relations are represented by a series of incre-
ment type equations, instead of one rate-type equation that is a combination of the associated flow rule
and the hypoelastic model. The constitutive relations sternly satisfies the Hooke�s law and the associated
flow rule, which do not lead to contradiction in the separation of the total deformation into elastic and
plastic parts.

2. A new objective rate (derivative) of back stress is presented for kinematic hardening. The form of this
objective rate is generally related to plastic deformation gradient. The objective rate becomes Jaumann
rate in the case of rigid-plastic deformation.
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